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Non-coding RNAs Affect Breast Cancer Development 
Through the Notch Signaling Pathway: An Overview

Alireza Ahmadi1#, Amin Moqadami1#, Mohammad Khalaj-Kondori1*  and Saeedeh Ghiasvand2

Abstract
Breast cancer is the most prevalent malignancy and the leading cause of cancer-related death in women. Breast cancer is still an 
extremely difficult cancer to treat due to its significant metastasis. Mis-regulation of Notch signaling components such as Notch 
receptors/ligands and their interaction in breast cancer sparks tumor initiation, maintenance, and progression through induc-
tion of abnormal tumorigenesis while modulating vascular integrity, drug resistance, invasion, and migration. Numerous 
studies have shown that non-coding RNAs can regulate Notch signaling and accordingly impact breast cancer pathobiology. 
MiRNAs could regulate Notch signaling components directly or indirectly via sponging or suppressing other genes involved 
in the pathway. Further, lncRNAs interact with miRNAs and mRNAs, and lncRNA-miRNA-mRNA interaction networks func-
tion as substantial mediators in various pathways, including the Notch signaling pathway. Also, by targeting and sponging 
other genes, circRNAs could induce tumorigenic properties via the Notch signaling pathway. Due to the intricacy of human 
physiology, it is challenging for standard drugs to be effective, and cancer cells can develop resistance to treatment and have 
a significant self-renewal capacity. Moreover, because non-specific Notch signaling intervention targets both tumor cells and 
immune cells, it may have the reverse effect of regulating the formation of tumors. Thus, an in-depth understanding of the 
mechanisms could be useful in diagnosis, prognosis, and the development of novel medications that specifically target Notch 
signaling, improving the efficacy of cancer immunotherapy in the treatment of breast cancer. This review will discuss and clari-
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fy the mechanisms by which miRNAs, lncRNAs, and circRNAs affect the Notch signaling pathway leading to BC development.
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Introduction
Breast cancer (BC) is the most commonly reported cancer and the 
main cause of cancer-related death in women worldwide.1 Epide-
miological data show that diverse communities have varying sensi-
tivity to BC.2 In 2020, more than 2.3 million new cases of BC and 
685,000 deaths were recorded, with incidence rates ranging from 
less than 40 per 100,000 women in some African and Asian countries 
to more than 80 per 100,000 in Northern America, New Zealand/
Australia, and some parts of Europe, implying a pattern of global 
geographic distribution. BC-related mortality shows less geographic 
variation, as it is disproportionately more prevalent in developing 
countries.3 International panels have introduced molecular subtypes 
for BC including duct A, duct B, HER2-enriched, and triple-nega-
tive breast cancer (TNBC), emphasizing the importance of choosing 
therapies based on fundamental molecular subtypes.4,5 According 
to recent findings, BC is a molecularly heterogeneous malignancy 
that requires treatment specific to each subtype. For example, for 
individuals with advanced hormone receptor-positive BC, chemo-
therapy was linked to a worse prognosis compared with endocrine 
therapy. In contrast, immunotherapy has a higher likelihood of being 
beneficial in patients with early stage TNBC.6 Epithelial to mesen-
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chymal transition (EMT) plays an essential role in metastatic cell 
invasion and tumor formation based on its prominent functions in 
wound healing, regeneration, and embryonic development. EMT in 
BC enhances the ability of tumor cells to migrate and invade, as well 
as their capability to evade the immune system. These factors are 
implicated in increased metastasis and tumor growth, which makes 
treatment options more challenging.7 To prevent drug resistance, a 
greater understanding of the molecular components and pathways 
that characterize the response to treatment is required. Addition-
ally, the availability of targeted therapy is limited. Overall, these 
variables underlie the importance of identifying optimal molecular 
targets for various BC subtypes to provide valuable and alternative 
approaches to enhance treatment strategies.

Mammals have four Notch receptors (Notch1-Notch4) and at 
least five ligands, including Jagged (JAG)1, JAG2, Delta-like (Dll)-
1, Dll-3, and Dll-4, which are derived from the Delta and JAG/Ser-
rate families.8–11 Notch has an extracellular domain and an Notch 
intracellular domain (NICD). These are joined by a transmembrane 
domain in mature Notch receptors.12 The cleaved NICD, which ac-
tivates the signaling response, is released upon ligand binding to the 
Notch receptor.13 Ligand-induced activation of the signaling cascade 
is straightforward. The NICD is released from the membrane by two 
consecutive proteolytic cleavages of the Notch receptor. Most of the 
Notch extracellular domain is cleaved by ADAM metalloproteases 
(a disintegrin and metalloprotease). S2 cleavage is the term used to 
describe this process.14 The residual Notch receptor (NICD) is then 
released from the cell through an intramembrane cleavage known as 
S3 cleavage, catalyzed by the γ-secretase complex.15 Mastermind-
like transcriptional coactivator (MAML) proteins are essential co-
factors in the RBPJ/NICD complex and are necessary for the proper 
functioning of the complex during transcriptional switching.16 In the 
case of aberrant expression of upstream and downstream Notch ef-
fectors, Notch signaling components control differentiation of the 
mammary epithelial cell during normal development, which are es-
sential underlying factors in BC.17 Dysregulation of Notch family 
members promotes BC progression via several routes, including 
cell proliferation, metastasis, migration, stem cell maintenance, and 
chemoresistance. The severe clinicopathological features of TNBC 
are strongly linked to Notch1 upregulation.18–20 A high level of 
Notch ligands and receptors has been associated with a poor prog-
nosis in BC patients.21 Multiple studies have shown that aberrant 
expression of Notch1, Notch2, and Notch4 can lead to cancer devel-
opment. On the other hand, Notch3 has been shown to have tumor 
suppressor functions in BC, which plays roles via tumor growth, 
EMT, angiogenesis, invasion, and self-renewal of BC stem-like cells 
caused by its mutation.22–29 Other research has demonstrated that 
increased expression of Notch1, Notch3, and JAG1 is directly re-
lated to an increased mortality rate.22 Collectively, there is ample 
evidence demonstrating that the Notch pathway has various crucial 
functions in the advancement of BC, and deregulation of the Notch 
signaling pathway can lead to different outcomes depending on the 
subtype of BC. This is due to the unique gene expression patterns 
and prognosis associated with each subtype. For instance, Notch3 
expression is increased in ductal A, and higher levels of Notch4 
were observed in ductal A and B.30,31 In contrast, there have been 
reports of increased levels of Notch1, Notch3, Notch4, and JAG1 
in the basal-like/TNBC subtype, leading to enhanced angiogenesis 
and poor survival of patients.32–34 In summary, tumor development, 
viability, and induced BC stem cell phenotypes are regulated by the 
Notch signaling pathway.35

BC is still an extremely difficult cancer to treat due to its signifi-
cant metastasis. Notch signaling could either accelerate or inhibit 
the spread of primary tumor cells by interacting with downstream 

effectors that regulate the invasion of BC cells via the mesenchyme 
and basement membrane.36 Furthermore, because non-specific 
Notch signaling intervention targets both tumor cells and immune 
cells, it may have the reverse effect of regulating the formation of 
tumors. In the meantime, immune cells involved in pro- or anti-
tumor responses and tumor immunogenicity can be modulated by 
Notch signaling.37 Thus, an in-depth understanding of the mecha-
nisms could be useful in the development of novel medications 
that specifically target Notch signaling, improving the efficacy of 
cancer immunotherapy in the treatment of breast cancer.

Current advances in high-throughput technologies have dem-
onstrated that most of the human genome is transcribed to non-
translating transcripts referred to as non-coding RNAs (ncRNAs). 
These ncRNAs can function as tumor-suppressor genes and 
proto-oncogenes, and contain functional elements that affect the 
expression of protein-coding genes.38,39 NcRNAs consist of long 
non-coding RNAs (lncRNAs), PIWI-interacting RNAs, small 
interfering RNAs (siRNAs), microRNAs (miRNAs), and circu-
lar RNAs (circRNAs).40,41 Multiple studies have delved into the 
involvement of various ncRNAs in the molecular pathways and 
progression of BC.42,43 It has been shown that ncRNAs modulate 
intracellular and/or intercellular signaling by controlling differ-
ent cellular functions, including estrogen receptor (ESR) levels 
and activity, proliferation, apoptosis, invasion, migration, and 
stemness.44 Additionally, ncRNAs have the potential to function 
like competitive endogenous RNAs and might represent an es-
sential molecular target for the classification of various subtypes, 
age categories, prognosis, therapy, and diagnosis of BC patients.45 
Multiple functional and experimental studies have been conducted 
recently that support the involvement of different ncRNAs in the 
modulation of the Notch signaling pathway.46 We will discuss this 
research in the following sections and clarify the mechanisms by 
which miRNAs, lncRNAs, and circRNAs affect the Notch signal-
ing pathway leading to BC pathobiology.

MiRNAs impact BC through Notch signaling
MiRNAs, which are 22 nucleotides in length, primarily control 
mRNA expression through binding to complementary sequences 
located in the 3′-untranslated regions of genes that they target.47 
Although the effects of miRNAs as repressors and destabilizers of 
the translation of mRNA transcripts have been widely explored, the 
impact of miRNAs on the function of lncRNAs is still not entirely 
clear.48 The control of miRNA metabolism and function by vari-
ous processes, including diverse protein-protein and protein-RNA 
interactions, has been the focus of numerous reports in the past 
few years.49 Because they control cell cycle progression, metasta-
sis development, apoptosis, metabolism, and angiogenesis, miR-
NAs have attracted attention for their significant role in tumori-
genesis.50 For example, in colorectal cancer cell lines miR-100 and 
miR-143 recovery may efficiently inhibit invasion, proliferation, 
and migration and trigger cell death, suggesting that miR-100 and 
miR0-143 could be developed as therapeutic targets.51 Similarly, 
miRNAs have recently been increasingly linked to the regulation 
of BC initiation and progression, both positively and negatively, as 
discussed below.52–54

MiRNAs positively regulate BC through Notch signaling
Multiple studies have revealed that miRNAs are upregulated 
and act as oncogenes in BC through regulating the Notch sign-
aling pathway (Table 1).55–93 Gao et al. provided evidence that 
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cells treated with an miR-150 inhibitor had decreased Notch1 and 
Notch3 expression as well as reduced cell invasion and migra-
tion.55 According to research by Yang et al., BC patients undergo-
ing chemotherapy have higher levels of miR-378d and miR-378a-
3p in their serum exosomes, which was linked to chemoresistance. 
This indicates that exosomal miR-378d and miR-378a-3p can be 
released by BC cells after treatment. As shown in Figure 1, chemo-
therapy–induced exosomal miR-378d and miR-378a-3p modulate 
Notch and WNT/β-catenin stemness pathways through targeting 
DKK3 and NUMB.56 Wang et al. proposed that miR-449a targets 
Notch1 and showed that cell proliferation and migration were fa-
cilitated by the upregulation of miR-449a.57 Using direct suppres-
sion of the E3 ubiquitin ligase, NEDD4L, Guarnieri et al. demon-
strated that Notch1 was upregulated by an miR-106b-25 cluster in 

various BC cell lines. They further showed that in both ESR+ and 
TNBC breast tumor cells, overexpression of Notch1 was required 
for tumor-initiating cell induction downstream of miR-106b-25.58 
EMT is known to be inhibited by Notch3, which is overexpressed 
in luminal BC cells. Liang et al. provided evidence that MDA-
MB-231, SKBR3, and BT549 cells (basal-like subtypes) had 
significantly high levels of miR-221/222, which reduced Notch3 
levels and promoted migration, invasion, metastasis, and EMT.59 
As described in Figure 1, Wang et al. showed that miR-146a can 
specifically target the 3′-untranslated regions of NUMB to prevent 
translation in BC. Furthermore, KLF8 (Kruppel-like Factor 8) can 
upregulate miR-146a expression resulting in the induction of pro-
tumorigenic mammary stem cells and the activation of Notch sign-
aling.60 As Peng et al. described, miR-21 is upregulated in BC. Ad-

Fig. 1. NcRNAs interfere with diverse components of the Notch signaling pathway. The development and characteristics of BC are substantially influenced 
by Notch signaling. This includes modulating angiogenesis, drug resistance, migration, metastasis, and apoptosis. ADAM, a disintegrin and metalloprotease; 
CoA, Coenzyme A; CoR, corepressor; CSL, CBF1 Suppressor of Hairless Lag-1; Dll, Delta-like; EYA1 Eyes absent homolog 1; EMT, epithelial-to-mesenchymal 
transition; FAT1, FAT Atypical Cadherin 1; JAG, jagged; KLF8, Kruppel-like Factor 8; Linc, long intergenic non-coding RNA; MAML, mastermind-like transcrip-
tional coactivator; NICD, Notch intracellular domain; NTM, Notch transmembrane subunit; NUMB, NUMB endocytic adaptor protein; OIP5, Opa interacting 
protein 5; STAT3, Signal Transducer and Activator of Transcription 3; SKA1, Spindle And Kinetochore Associated Complex Subunit 1.
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ditionally, when miR-34a was silenced, or miR-21 was increased, 
the impacts of 3,6-Dihydroxyflavone on PTEN and Notch1 were 
significantly reduced, and inhibition of the PI3K/Akt/mTOR axis 
was further suppressed.61

MiRNAs negatively regulate BC through the Notch signaling
On the other hand, numerous studies have indicated that miRNAs 
are downregulated and function as tumor suppressors in BC via the 
Notch signaling pathway. Chaudhari et al. stated that synthesized 
gold nanoparticles, in addition to transfecting miR-206, also led to 
apoptosis of MCF-7 cells by inducing cell cycle arrest in the G0-
G1 phase via downregulating Notch3.62 Furthermore, Samaeekia 
et al. reported that breast tumor stemness and metastasis are sup-
pressed by hsa-miR-206. They showed that Notch2 mRNA levels 
were significantly reduced by forced expression of miR-206.63 
These interactions are shown in Figure 1. Xiao et al. provided evi-
dence that the inhibitory effects of miR-129 were eliminated when 
siRNAs inhibited NUMB. They established that miR-129 inhib-
ited ESR1 and stopped cyclin D1/DICER1 from maintaining let-7, 
allowing let-7 to degrade NUMB.64 According to Liu et al., miR-
526b-3p suppressed HIF-2α, Nanog, ALDH1, Notch1, and HEY2 
in BC cells treated with paclitaxel, causing colony formation and 
paclitaxel resistance. Conversely, HIF-2α, which is a target of miR-
526b-3p,65 can mitigate the impacts of miR-526b-3p. Chiang et al. 
indicated that miRNA sponge suppression of miR-182 dramati-
cally increased FBXW7 protein expression and decreased cyclin E 
and Notch. According to these findings, H184B5F5/M10-miR-182 
cells were highly sensitive to hypoxia.66 Mugisha et al. explained 
that MFNG increased expression of the Notch target genes HEY1 
and HES1 in TNBC cells. These results indicate that GATA3 binds 
directly to the promoter of MFNG and inhibits transcription. These 
findings support the hypothesis that miR-205-5p reduces the ma-
lignancy of TNBC cells by suppressing MFNG transcription. Fur-
thermore, GATA3, miR-205-5p, and MFNG constitute a unique 
feed-forward loop in the control of TNBC development, as GATA3 
was found to directly modulate miR-205-5p transcription.67 In ad-
dition, Chao et al. provided evidence that reduction of miR-205 
was positively associated with increased Notch2 and ZEB1 ex-
pression levels in invasive BC. HES1 binds directly to the spe-
cific promoter site of miR-205 binds, and JAG1 stimulates HES1 
to downregulate miR-205 gene expression.68 Zhao et al. revealed 
that miR-27-3p overexpression prevents activation of the Notch 
pathway via preventing Notch protein cleavage by γ-secretase 
(Fig. 1). Thus, in turn, miR-27-3p sensitizes TNBC cells to Olapa-
rib, an anticancer drug.69 Shi et al. demonstrated that targeting 
MAML1 through silencing miR-133a-3p might enhance BC cell 
invasion, EMT, migration, proliferation, and activation of Notch 
signaling. By regulating DNMT3A and MAML1, there is posi-
tive feedback that regulates promoter methylation of miR-133a-
3p.70 Li et al. showed that low levels of miR-1179 corresponded 
to a lower overall survival rate. Increasing miR-1179 could thus 
downregulate Notch1, Notch4, and HES1, ultimately stopping BC 
cells from proliferating and metastasizing.71 Kong et al. demon-
strated that miR-3178 inhibits cell proliferation, metastasis, and 
EMT by reducing Notch1 expression in TNBC.72 As illustrated in 
Figure 1, Shui et al. showed that miR-130b-3p targets Dll-1, ar-
resting Notch signaling directly. BC invasion and migration were 
reduced by high levels of miR-130b-3p.73 Chen et al. concluded 
that miR-139-5p strongly decreased the protein expression of 
Notch1 and HES1, as well as OIP5, which are overexpressed in 
BC.74 Zhang et al. illustrated that miR-139-5p, a tumor suppressor 

miRNA, could prevent breast tumor migration by downregulating 
the expression of Notch1, which prevented MMP2, MMP7, and 
MMP9 expression.75 Zhang et al. discovered that miR-30a inhibits 
BC cell invasion and migration, induces apoptosis, and retards the 
development of BC by targeting Notch1.76 Guan et al. reported 
that an miR-101 mimic could considerably decrease the expres-
sion of HES1, HEY1, and JAG1, and miR-101 decreased BC cell 
proliferation and assisted in apoptosis by inhibiting the Notch 
pathway, which may be mediated by EYA1 (Fig. 1).77 Kang et al. 
showed that miR-34a, as a tumor suppressor, impacted prolifera-
tion, invasion, and migration by Notch1 functionally targeting and 
blocking the Notch pathway.78 Further, De Carolis et al. indicated 
that both Notch3 and JAG1, which are targets of miR-34a, were 
enhanced by overexpression of Carbonic Anhydrase Isoenzyme 9, 
which acts as an endogenous miRNA sponge.79 Deng et al. also 
illustrated that miR-34a functions as an endogenous tumor sup-
pressor in TNBC. Restoring intracellular miR-34a levels has been 
shown to directly target Notch1 to reduce BC cell migration.80 
Mohammadi-Yeganeh et al. concluded that Notch1 expression 
was increased while miR-9 expression was reduced in TNBC. As 
such, by directly targeting Notch1, miR-9 can decrease metastatic 
characteristics in TNBC.81 Sun et al. proposed that protein expres-
sion of Notch1, VEGF, MMP-2, and MMP-9 is blocked by high 
levels of miR-34a and miR-224, which prevents BC cell survival, 
migration, and angiogenesis.82 Brabletz and Burk et al. indicated 
that the miR-200 family interacts not just with ZEB1 but also with 
some components of the Notch pathway, notably JAG1, MAML2, 
and MAML3, in BC. In a mutual feedback loop, members of the 
ZEB1 and miR-200 families suppress one another’s expression; 
ZEB1 can inhibit the expression of miR-200, which in turn in-
directly stimulates Notch signaling. Overexpressing miR-141 
and miR-200c or knocking down expression of ZEB1 can reduce 
JAG1 expression.83,84

To develop effective treatment strategies, a thorough under-
standing of the mechanisms of drug resistance, EMT, invasion, 
migration, and proliferation in BC is necessary. The studies de-
scribed above highlight the importance of miRNAs in breast car-
cinogenesis, and thus clearly demonstrate a role for miRNAs in 
reducing drug resistance. Due to their adaptability, miRNA mimics 
and inhibitors could prove to be beneficial therapeutic approaches 
for BC. However, effective miRNA delivery methods remain a sig-
nificant challenge.94

LncRNAs impact BC through Notch signaling
LncRNAs are transcribed RNAs consisting of more than 200 nu-
cleotides that are not translated to proteins. LncRNAs are func-
tional units, and subcellular localization is essential for their func-
tion.95 Initial lncRNA annotations provided the framework for 
microarray concepts, allowing researchers to carry out basic func-
tional genomics studies and identify lncRNAs in various process-
es, notably cardiac differentiation,96 interfering with differentia-
tion of neurons,97 tumor suppression,98,99 reprogramming,100 and 
pluripotency of embryonic stem cells.101 LncRNAs also support 
the establishment of robust, quick, and precise transcriptional and 
post-transcriptional control.102 There are many reports on the de-
regulation of lncRNAs in BC. For instance, the lncRNA DSCAM-
AS1 is increased in BC, and its elevated expression is related to BC 
development.103 Studies have demonstrated that lncRNAs are vital 
in the modulation of several signaling pathways, notably Notch in 
BC, where each subtype has a unique set of abnormalities in vari-
ous signaling pathways.104 LncRNAs interact with miRNAs and 
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mRNAs, and lncRNA-miRNA-mRNA interaction networks func-
tion as substantial mediators in various pathogenic pathways.105,106 
As summarized in Table 2,85–90,107–112 lncRNAs can induce metas-
tasis, invasion, proliferation, migration, and drug resistance in BC 
through positive or negative regulation of the Notch pathway, as 
discussed below.

LncRNAs positively regulate BC through Notch signaling
Ren et al. inhibited KCNQ1OT1 expression using shRNA in BC 
cell lines, which reduced tumor growth and invasion, migration, 
and proliferation both in vivo and in vitro. As depicted in Figure 
1, upregulation of KCNQ1OT1 can inhibit miR-34a, preventing 
the suppressive impact of miR-34a on BC invasion, migration, 
and proliferation. Thus, KCNQ1OT1 significantly increases ex-
pression of Notch3 in BC.85 According to research by Wang et 
al., NDR1 controls drug resistance (to Epirubicin and Taxol) and 
apoptosis in BC cells. NICD1 was further expressed by NDR1 and 

promoted its target genes c-MYC and HES-1. In addition, Wang 
et al. discovered that increased NDR1 expression was associated 
with poor survival in BC.107 Jiang et al. indicated that SNHG3 
expression is increased in BC tissues. To promote the growth, 
migration, and invasion of BC cells, SNHG3 may act as an en-
dogenous RNA with miR-154-3p and regulate the Notch signal-
ing pathway.86 Huang et al. indicated that overexpression of long 
intergenic non-coding RNA (linc)-00052 in BC cell lines induced 
metastasis, invasion, proliferation, and migration through the linc-
00052/miR-548p/Notch2 axis (Fig. 1). Additionally, linc-00052 
stimulated migration and invasion by increasing Proline-Rich Ty-
rosine Kinase 2 phosphorylation (downstream factor of Notch2).87 
The first miRNA sponge interaction between miR-205 and CCAT2 
was identified by Xu et al., who showed that Notch2, a crucial 
miR-205 target gene, was upregulated in TNBC; miR-205 down-
regulated the Notch2 target gene, whereas CCAT2 increased its 
expression.88 Sun et al. revealed that SNHG7 stimulates miR-34a 
through EMT induction and the Notch1 pathway, which promotes 
BC growth and progression.89 Moreover, several studies provided 

Table 2.  Outline of lncRNA mechanisms of action through the Notch signaling pathway in BC

lncRNAs Target(s) Function(s) Expression Model (in 
vitro, in vivo) Mechanism of action Reference(s)

KCNQ1OT1 Notch3 Induced proliferation, 
migration, and invasion

Upregulated in vitro/in vivo Increases Notch3 by 
inhibiting miR-34a

85

NDR1 Notch1 Caused BC stemness, 
metastasis, and 
drug resistance

Upregulated in vitro Upregulates NICD1 107

SNHG3 Notch2 Promoted metastasis 
and proliferation

Upregulated in vitro/in vivo Upregulates Notch2 by 
acting as a competing 
endogenous RNA of 
miR-154-3p and

86

linc-00052 Notch2 Induced metastasis, 
invasion, proliferation, 
and migration

Upregulated in vitro/in vivo Targets miR-548p 
(which targets Notch2)/
Increases phosphorylation 
of Pyk2 (downstream 
factor of Notch2)

87

CCAT2 Notch2 Promoted proliferation 
and metastasis

Upregulated in vitro/in vivo Upregulates Notch2 by 
sponging miR-205

88

SNHG7 Notch1 Promoted cell 
growth and EMT

Upregulated in vitro/in vivo Sponges miR-34a (which 
inhibits Notch1)

89

linc-OIP5 JAG1, YAP1 
(HIPPO)

Increased proliferation, 
metastasis, and 
angiogenesis

Upregulated in vitro Controls YAP1/Notch/
NRP1 and Dll-4/Notch/
NRP1 signaling circuits by 
upregulating JAG1 and YAP1

108,109

BREA2 NICD1 Activated the Notch 
signaling pathway and 
induced metastasis

Upregulated in vitro/in vivo Stabilizes NICD1 by 
diminishing the WWP2-
NICD1 complex

110

linc-00514 JAG1 and 
STAT3

Induced metastasis Upregulated in vitro/in vivo Upregulates STAT3 
(which increases JAG1)

111

MALAT1 JAG1, VEGFA Induced angiogenesis Upregulated in vitro/in vivo Upregulates JAG1 and 
VEGFA/Sponges miR-140-
5p (which targets JAG1)

90

MEG3 Notch1 Promoted proliferation 
and EMT

Downregulated in vitro/in vivo Inhibits Notch1 112

Dll, Delta-like; EMT, epithelial-to-mesenchymal transition; JAG, jagged; KCNQ1OT1, Potassium Voltage-Gated Channel Subfamily Q Member 1 Opposite Strand/Overlap Transcript 
1; NDR1: N-Myc Downstream-Regulated 1; lncRNA, long non-coding RNA; NICD1, Notch1 intracellular domain; Pyk2, Proline-Rich Tyrosine Kinase 2.
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evidence that lncRNAs precisely target Notch signaling compo-
nents (Table 2). In MDA-MB-231 cells treated with linc-OIP5 
siRNA, Zhu et al. demonstrated that cell invasion, migration, and 
proliferation were downregulated, whereas apoptosis induction 
was upregulated. Mechanistic studies showed that downregula-
tion of linc-OIP5 decreased the expression of JAG1 and YAP1 
(Fig. 1).108 The findings of Zhu et al. described, at least in part, a 
novel angiogenic signaling circuit (YAP1/Notch/NRP1) in breast 
malignancies, raising the possibility of linc-OIP5 as a target for 
therapy in breast tumor angiogenesis.109 Zhang et al. indicated that 
by maintaining NICD1 stability, BREA2 promotes BC metastasis. 
Mechanistically, WWP2 is an E3 ubiquitin ligase for NICD1, in 
which BREA2 disrupts the WWP2-NICD1 complex.110 Based on 
the report by Tao et al., linc-00514 overexpression promoted BC 
cell proliferation and invasion, which also increased the volumes 
of xenograft tumors and pulmonary metastatic nodules. As indicat-
ed in Figure 1, linc-00514 promoted the transcription of JAG1 by 
increasing STAT3 (Signal Transducer and Activator of Transcrip-
tion 3) phosphorylation.111 Liu et al. stated that JAG1 and VEGFA 
expression decreased in TNBC following siRNA inhibition of 
MALAT1. Thus, exosomal MALAT1 may enhance angiogenesis 
via the MALAT1-miR-140-5p-JAG1/VEGFA axis, and MALAT1 
could mechanistically inhibit miR-140-5p and miR-140-5p via tar-
geting JAG1.90

LncRNAs negatively regulate BC through Notch signaling
As shown by Pan et al., MEG3 knockdown in association with 
5-AzadC or sh-DNMT1 therapy recovered Notch1 receptor ex-
pression, activated the Notch1 pathway, and accelerated EMT in 
BC.112 Large-scale -omics research has provided a wealth of infor-
mation on lncRNA transcription in BC, suggesting that lncRNAs 
may be indicators for early recognition, assessment, and prognosis 
of BC.113 As stated in prior studies, lncRNAs interact with miR-
NAs, Notch components, and other genes to regulate the cascade 
and may be exploited as possible targets and prognostic markers. 
Interestingly, lncRNAs both directly and indirectly target the li-
gands and receptors of the Notch signaling pathway, leading us to 
hypothesize that these axes could be targeted to establish a useful 
treatment for BC patients.

CircRNAs impact BC through Notch signaling
The transcriptome of eukaryotes contains a large number of cir-
cRNAs, a unique and distinct family of endogenous ncRNAs that 
construct a continuous covalently bound cycle.114 Most circRNAs 
are expressed only in specific tissues or during particular phases 

of development. It has been demonstrated that circRNAs carry out 
essential tasks such as translating proteins and peptides, sponging 
RNA binding proteins, regulating gene splicing and transcription, 
and sponging miRNAs.115 Additionally, recent studies have dem-
onstrated that circRNAs play a critical role in the modulation of 
numerous transduction pathways and various cancer types, notably 
Notch signaling and BC (Table 3).91–93,116

CircRNAs positively regulate BC through Notch signaling
Reports of how circRNAs function within the Notch signaling 
pathway in BC are scarce, but those that have been published are 
discussed here. Yao et al. showed that tolerance of BC cells to ox-
aliplatin (OX) decreases with circ-FAT1 knockdown. Circ-FAT1 
directly targets miR-525-5p, which is upregulated in OX-resistant 
BC cells.91 SKA1, a target of miR-525-5p, is elevated in BC cells 
(Fig. 1). SKA1 may stimulate Wnt and Notch signaling pathways, 
as evidenced by suppression of β-catenin, Glycogen synthase 
kinase-3, and Notch2 expression in BC cells after SKA1 knock-
down.91 Gong et al. found that the TNBC oncogenic characteris-
tics of circ-UBR5 are mediated by miR-1179 sponging and upreg-
ulation of UBR5.92 As illustrated in Figure 1, we can conclude that 
overexpression of circ-UBR5, which sponges miR-1179, activates 
the Notch signaling pathway in different types of BC.71,92

CircRNAs negatively regulate BC through Notch signaling
As Wang et al. indicated, Notch1 is downregulated in BC cells. 
CircRNA-000911 is also overexpressed, and this significantly 
inhibits the capability of BC cells to proliferate, promote wound 
healing, and trigger apoptosis. The incremental expression of cir-
cRNA-0009111 can significantly reduce miR-449a expression in 
BC cells. Hence, circRNA-000911 positively regulates Notch1 ex-
pression by sponging miR-449a.93

Lu et al. conducted a human circRNA array and found that 715 
and 440 circRNAs were increased and decreased, respectively, 
in BC tissues, indicating their value as diagnostic biomarkers.117 
Notably, circRNAs can be used as biomarkers in various diseases 
due to their high abundance and excellent stability. Furthermore, 
due to their diverse functions, circRNAs play a crucial role in the 
modulation of tumor progression.118 These findings suggest that 
circ-FAT1, circRNA-000911, and circ-UBR5 may be regarded as 
diagnostic and prognostic markers for BC.

Therapeutical applications of ncRNAs in BC
MiRNA therapies are designed as oligonucleotides that adjust the 

Table 3.  Outline of circRNA mechanisms of action through the Notch signaling pathway in BC

circR-
NAs Target(s) Function(s) Expression Model (in 

vitro, in vivo) Mechanism of action Reference(s)

circ-
FAT1

Notch2 Promoted metastasis, 
proliferation, and 
drug resistance

Upregulated in vitro Targets miR-525-5p 
(which targets SKA1)

91

circ-
UBR5

Notch1, Notch4, 
HES1, and UBR5

Induced growth 
and metastasis

Upregulated in vitro/in vivo Sponges miR-1179 and 
upregulates UBR5 (oncogene)

92

circ-
000911

Notch1 Suppresses cell 
proliferation

Downregulated in vitro Upregulates Notch1 by 
sponging miR-449a

93

circRNA, circular RNA; FAT1, FAT Atypical Cadherin 1; HES1, Hairy and Enhancer of Split-1; UBR5, Ubiquitin Protein Ligase E3 Component N-Recognin 5.
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aberrant expression of miRNAs and related pathways.119 This is 
accomplished by substituting defective tumor-suppressive miR-
NAs and inhibiting oncogenic miRNAs. A wide range of prior 
preclinical research on migraine therapeutic modification has sug-
gested that this could be an effective method of enhancing cancer 
therapy.120 For example, Zhao et al. demonstrated that miR-21 sup-
pression significantly decreased the development of breast tumors 
and angiogenesis in vivo by inhibiting the HIF-1a/VEGF/VEGFR2 
axis.121 Therapeutic modulation of lncRNAs can be achieved by 
either upregulating or downregulating their expression. Small 
molecule inhibitors, CRISPR-Cas9 system, antisense oligonucleo-
tides, and RNA interference (RNAi) are a few methods that could 
be used to suppress lncRNA expression.122 For instance, Liu et 
al. utilized RNAi-mediated knockdown of MALAT1 in TNBC 
to hinder angiogenesis by downregulating VEGFA and JAG1.90 
Since circRNAs are miRNA sponges and could play a role in drug 
resistance and the development of BC, they could be upregulated 
or silenced to serve as potential therapeutic targets.123 In this case, 
Yao et al. indicated that RNAi-mediated knockdown of circ-FAT1 
decreased OX-resistance and cell viability. Specifically, circ-FAT1 
was shown to sponge miR-525-5p, leading to SKA1 upregulation 
and triggering Wnt and Notch pathways.124

Future remarks
Due to the advancement of novel therapies, precision medicine 
may be used to effectively treat cancers. However, for different 
reasons, various treatments should be offered at each stage. De-
spite the discovery of more and more anti-cancer medications, 
tumor drug resistance remains a problem. Due to the intricacy of 
human physiology, it is challenging for standard drugs to be effec-
tive, and cancer cells can develop resistance to treatment and have 
a significant self-renewal capacity.46 Over the past 20 years, it has 
been well established that Notch signaling is essential for mam-
mary gland development and the etiology of BC. High Notch sign-
aling is present in all cancers, however, it is particularly linked to 
cancers that show therapy resistance (e.g., TNBC) and have a poor 
prognosis.124 Mis-regulation of Notch signaling elements, such as 
Notch ligands and receptors, and their interactions in BC provide 
a launching pad for tumor initiation, development, and survival by 
triggering abnormal tumorigenesis (tumor regeneration, stemness 
induction) while establishing vascular integrity, migration, inva-
sion (EMT), and drug resistance.

Conclusions
According to the literature, ncRNAs that interact with Notch com-
ponents and downstream factors are deregulated in BC. Some ncR-
NAs show antitumor activities, but others act as tumor promoters 
in BC. This highlights the complexity of ncRNA function and pos-
sible implications in BC progression, which should be considered 
more seriously in diagnosis, development of new therapeutic strat-
egies, and prognosis. As promising therapeutic approaches, tar-
geting linc-00514 (an oncogene) and employing miR-206 mimic 
nanoparticles, may have good outcomes. Furthermore, circUBR5 
(an oncogene), found in a panel of human malignancies, serves 
as a prognostic biomarker. Developing targeted therapeutic strate-
gies based on the utilization of lncRNAs, miRNAs, and circRNAs 
requires knowledge of the precise process of BC carcinogenesis. 
Although, the described processes of ncRNA functioning through 
the Notch pathway in BC tumorigenesis could be beneficial in pre-
cision therapy, further research is still needed.
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